Year 2018 - Volume 38, Number 2


Title
Antimicrobial and antibiofilm activity of silver nanoparticles against Aeromonas spp. isolated from aquatic organisms, 38(1):244-249
Authors

Abstract
ABSTRACT.- Braga N.B., Pires L.C.S.R., Oliveira H.P. & Costa M.M. 2018. [Antimicrobial and antibiofilm activity of silver nanoparticles against Aeromonas spp. isolated from aquatic organisms.] Atividade antimicrobiana e antibiofilme de nanopartículas de prata sobre isolados de Aeromonas spp. obtidos de organismos aquáticos. Pesquisa Veterinária Brasileira 38(2):244-249. Colegiado Acadêmico de Zootecnia, Universidade Federal do Vale do São Francisco, Rodovia BR-407 Km 12, Lote 543, Projeto de Irrigação Nilo Coelho s/n, C1, Petrolina, PE 56300-000, Brazil. E-mail: mmatiuzzi@hotmail.com

The indiscriminate use of antibiotics has selected some pathogenic bacteria being multidrug-resistant, a situation that can be exacerbated by biofilms formation. Thus, silver nanoparticles (AgNPs) have been highlighted as an innovative alternative, low-cost and effective against bacterial diseases. The aim of this study was to determine the antimicrobial activity of AgNPs and the interference in Aeromonas spp. biofilm formation. The strains were obtained from aquatic organisms. The AgNPs were chemically synthesized using as reducing agent trisodium citrate and characterized by ultraviolet-visible spectroscopy (UV-Vis). The antimicrobial activity was carried out against three isolates by the microdilution broth method for determining minimum bactericidal concentration (CBM) and cultivation of CCCP, an inhibitor of the efflux pump, was carried out to complement the effect of AgNPs. Interference in the biofilm formation was performed according to the protocol and consolidated, within the resistance structure characterization by scanning electron microscopy. In the test of the CBM, the AgNPs were unable to inactivate the growth of the isolates, while the silver nitrate obtained efficiency in different concentrations. In the efflux pump inhibitor presence the isolates were analyzed, one went from resistant to nanoparticles to sensitive. The AgNPs were effective in reducing of biofilm formation and acted on the consolidated biofilm in all tested isolates. These results indicate the silver nanoparticles to interfere with Aeromonas spp. biofilm from aquatic organisms and human bodies.
Download / View
  
 
Colégio Brasileiro de Patologia Animal CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico Coordenação de Aperfeiçoamento de Pessoal de Nível Superior ISI Web of Knowledge SciELO - Scientific Electronic Library Online Banco de Dados Bibliográficos da USP UnB - Universidade de Brasília UFRRJ - Universidade Federal Rural do Rio de Janeiro CFMV - Conselho Federal de Medicina Veterinária